组织病理学图像的出现取决于组织类型,染色和数字化过程。这些因素因来源而异,是域转移问题的潜在原因。由于这个问题,尽管深度学习模型在计算病理学中取得了巨大的成功,但在特定领域训练的模型当我们将其应用于另一个领域时,仍可能会表现出色。为了克服这一点,我们提出了一种称为PatchShuffling的新扩展,并为预训练的深度学习模型而被称为Impash的新型自我监视的对比学习框架。使用这些,我们获得了一个RESNET50编码器,该编码器可以提取对域移位抗性的图像表示。我们通过使用其他域普通化技术来比较了我们的派生表示形式,它们通过将它们用于结直肠组织图像的跨域分类。我们表明,所提出的方法优于其他传统的组织学领域适应和最先进的自我监督学习方法。代码可在以下网址获得:https://github.com/trinhvg/impash。
translated by 谷歌翻译
机器学习算法已被广泛用于入侵检测系统,包括多层感知器(MLP)。在这项研究中,我们提出了一个两阶段模型,该模型结合了桦木聚类算法和MLP分类器,以提高网络异常多分类的性能。在我们提出的方法中,我们首先将桦木或kmeans作为无监督的聚类算法应用于CICIDS-2017数据集,以预先分组数据。然后,将生成的伪标签作为基于MLP分类器的训练的附加功能添加。实验结果表明,使用桦木和K-均值聚类进行数据预组化可以改善入侵检测系统的性能。我们的方法可以使用桦木聚类实现多分类的99.73%的精度,这比使用独立的MLP模型的类似研究要好。
translated by 谷歌翻译
常识性推理系统应该能够推广到各种推理案例。但是,大多数最先进的方法都取决于昂贵的数据注释,并且在不学习如何执行一般语义推理的情况下过度适合特定基准。为了克服这些缺点,零射击质量检查系统通过将常识性知识图(kg)转换为合成质量质量质量质量验证样本进行模型训练,已将有望作为强大的学习方案显示出来。考虑到不断增加的不同常识性KG类型,本文旨在将零拍传输的学习方案扩展到多种源设置,在这种设置中,可以协同使用不同的KGS。为了实现这一目标,我们建议通过将知识聚合的模块化变体作为一个新的零摄影常识性推理框架来减轻不同知识源之间的干扰丧失。五个常识性推理基准的结果证明了我们框架的功效,从而改善了多个公斤的性能。
translated by 谷歌翻译
恶劣的天气图像翻译属于无监督的图像到图像(I2i)翻译任务,旨在将不利条件领域(例如,雨夜)转移到标准领域(例如,日期)。这是一个具有挑战性的任务,因为来自不利域的图像具有一些伪影和信息不足。最近,许多采用生成的对抗性网络(GANS)的研究在I2I翻译中取得了显着的成功,但仍然有限制将它们应用于恶劣天气增强。基于双向循环 - 一致性损耗的对称架构被采用作为无监督域传输方法的标准框架。但是,如果两个域具有不平衡信息,它可能会导致较差的转换结果。为了解决这个问题,我们提出了一种新的GaN模型,即Au-GaN,它具有不对称的域翻译的非对称架构。我们仅在普通域生成器(即雨夜 - >日)中插入建议的功能传输网络($ {T} $ - 网),以增强不利域图像的编码特征。此外,我们介绍了对编码特征的解剖学的非对称特征匹配。最后,我们提出了不确定感知的周期 - 一致性损失,以解决循环重建图像的区域不确定性。我们通过与最先进的模型进行定性和定量比较来证明我们的方法的有效性。代码在https://github.com/jgkwak95/au-g中提供。
translated by 谷歌翻译
Optical coherence tomography (OCT) captures cross-sectional data and is used for the screening, monitoring, and treatment planning of retinal diseases. Technological developments to increase the speed of acquisition often results in systems with a narrower spectral bandwidth, and hence a lower axial resolution. Traditionally, image-processing-based techniques have been utilized to reconstruct subsampled OCT data and more recently, deep-learning-based methods have been explored. In this study, we simulate reduced axial scan (A-scan) resolution by Gaussian windowing in the spectral domain and investigate the use of a learning-based approach for image feature reconstruction. In anticipation of the reduced resolution that accompanies wide-field OCT systems, we build upon super-resolution techniques to explore methods to better aid clinicians in their decision-making to improve patient outcomes, by reconstructing lost features using a pixel-to-pixel approach with an altered super-resolution generative adversarial network (SRGAN) architecture.
translated by 谷歌翻译
We introduce a new tool for stochastic convex optimization (SCO): a Reweighted Stochastic Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density. Combining ReSQue with recent advances in ball oracle acceleration [CJJJLST20, ACJJS21], we develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings. For a SCO objective constrained to the unit ball in $\mathbb{R}^d$, we obtain the following results (up to polylogarithmic factors). We give a parallel algorithm obtaining optimization error $\epsilon_{\text{opt}}$ with $d^{1/3}\epsilon_{\text{opt}}^{-2/3}$ gradient oracle query depth and $d^{1/3}\epsilon_{\text{opt}}^{-2/3} + \epsilon_{\text{opt}}^{-2}$ gradient queries in total, assuming access to a bounded-variance stochastic gradient estimator. For $\epsilon_{\text{opt}} \in [d^{-1}, d^{-1/4}]$, our algorithm matches the state-of-the-art oracle depth of [BJLLS19] while maintaining the optimal total work of stochastic gradient descent. We give an $(\epsilon_{\text{dp}}, \delta)$-differentially private algorithm which, given $n$ samples of Lipschitz loss functions, obtains near-optimal optimization error and makes $\min(n, n^2\epsilon_{\text{dp}}^2 d^{-1}) + \min(n^{4/3}\epsilon_{\text{dp}}^{1/3}, (nd)^{2/3}\epsilon_{\text{dp}}^{-1})$ queries to the gradients of these functions. In the regime $d \le n \epsilon_{\text{dp}}^{2}$, where privacy comes at no cost in terms of the optimal loss up to constants, our algorithm uses $n + (nd)^{2/3}\epsilon_{\text{dp}}^{-1}$ queries and improves recent advancements of [KLL21, AFKT21]. In the moderately low-dimensional setting $d \le \sqrt n \epsilon_{\text{dp}}^{3/2}$, our query complexity is near-linear.
translated by 谷歌翻译
Cashews are grown by over 3 million smallholders in more than 40 countries worldwide as a principal source of income. As the third largest cashew producer in Africa, Benin has nearly 200,000 smallholder cashew growers contributing 15% of the country's national export earnings. However, a lack of information on where and how cashew trees grow across the country hinders decision-making that could support increased cashew production and poverty alleviation. By leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, newly developed deep learning algorithms, and large-scale ground truth datasets, we successfully produced the first national map of cashew in Benin and characterized the expansion of cashew plantations between 2015 and 2021. In particular, we developed a SpatioTemporal Classification with Attention (STCA) model to map the distribution of cashew plantations, which can fully capture texture information from discriminative time steps during a growing season. We further developed a Clustering Augmented Self-supervised Temporal Classification (CASTC) model to distinguish high-density versus low-density cashew plantations by automatic feature extraction and optimized clustering. Results show that the STCA model has an overall accuracy of 80% and the CASTC model achieved an overall accuracy of 77.9%. We found that the cashew area in Benin has doubled from 2015 to 2021 with 60% of new plantation development coming from cropland or fallow land, while encroachment of cashew plantations into protected areas has increased by 70%. Only half of cashew plantations were high-density in 2021, suggesting high potential for intensification. Our study illustrates the power of combining high-resolution remote sensing imagery and state-of-the-art deep learning algorithms to better understand tree crops in the heterogeneous smallholder landscape.
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
In this paper, we develop an efficient multi-scale network to predict action classes in partial videos in an end-to-end manner. Unlike most existing methods with offline feature generation, our method directly takes frames as input and further models motion evolution on two different temporal scales.Therefore, we solve the complexity problems of the two stages of modeling and the problem of insufficient temporal and spatial information of a single scale. Our proposed End-to-End MultiScale Network (E2EMSNet) is composed of two scales which are named segment scale and observed global scale. The segment scale leverages temporal difference over consecutive frames for finer motion patterns by supplying 2D convolutions. For observed global scale, a Long Short-Term Memory (LSTM) is incorporated to capture motion features of observed frames. Our model provides a simple and efficient modeling framework with a small computational cost. Our E2EMSNet is evaluated on three challenging datasets: BIT, HMDB51, and UCF101. The extensive experiments demonstrate the effectiveness of our method for action prediction in videos.
translated by 谷歌翻译
Off-policy evaluation (OPE) is a method for estimating the return of a target policy using some pre-collected observational data generated by a potentially different behavior policy. In some cases, there may be unmeasured variables that can confound the action-reward or action-next-state relationships, rendering many existing OPE approaches ineffective. This paper develops an instrumental variable (IV)-based method for consistent OPE in confounded Markov decision processes (MDPs). Similar to single-stage decision making, we show that IV enables us to correctly identify the target policy's value in infinite horizon settings as well. Furthermore, we propose an efficient and robust value estimator and illustrate its effectiveness through extensive simulations and analysis of real data from a world-leading short-video platform.
translated by 谷歌翻译